
Why Julia?

Hendrik Ranocha

2023-10-09

Scientific computing: simulation of a Mach 3 flow with Trixi.jl1

Credit: Andrew R. Winters et al. with Trixi.jl
1R., Schlottke-Lakemper, Winters, Faulhaber, Chan and Gassner (2022); Schlottke-Lakemper, Winters,

R. and Gassner (2021)

Numerical analysis: studying time integrators with BSeries.jl2

▶ Analysis of numerical integrators for 𝑢′(𝑡) = 𝑓
(
𝑢(𝑡)

)
𝑢𝑛+1 = 𝐵(𝑎,Δ𝑡 𝑓 , 𝑢𝑛) = 𝑎(∅)𝑢𝑛 +

∑
𝜏∈𝑇

ℎ |𝜏|

𝜎(𝜏) 𝑎(𝜏)𝐹(𝜏)(𝑢
𝑛)

▶ Based on rooted trees and elementary differentials

, , , , . . . , , . . . 𝑓 (𝑢), 𝑓 ′
(
𝑓 (𝑢)

)
, 𝑓 ′

(
𝑓 ′
(
𝑓 (𝑢)

))
, 𝑓 ′′

(
𝑓 (𝑢), 𝑓 (𝑢)

)
, . . .

Mod. eq. Mod. int. Energy pres.

pybs ≈ 8.3 s — ≈ 8.4 s
BSeries.jl ≈ 0.1 s ≈ 0.05 s ≈ 0.1 s

2Ketcheson and R. (2023)

https://github.com/henriksu/pybs
https://ranocha.de/BSeries.jl

Table of contents

Overview of Julia

Performance

Reproducibility

Caveats

Bringing it all together

Julia

According to the official website
https://julialang.org, Julia is . . .

▶ free
▶ dynamic
▶ general
▶ composable
▶ fast
▶ reproducible

Julia encourages good software development practices!

© Stefan Karpinski / CC BY-NC-SA 4.0

https://julialang.org
https://creativecommons.org/licenses/by-nc-sa/4.0/

Testing

▶ Testing framework Test.jl in the standard
library

▶ Continuous integration (CI) via GitHub actions
▶ Coverage reports via Coveralls.io and

Codecov.io

Documentation

▶ Docstrings
▶ Doctests and rendering with Documenter.jl
▶ GitHub actions and pages

Streamlined release management & dependency tracking via GitHub

JuliaRegistrator.jl
Register new versions

TagBot
Tag registered versions

CompatHelper.jl
Keep dependencies
up-to-date

Trixi.jl developers

Interactivity and general programming

Interactivity
▶ Julia REPL (read-eval-print-loop)
▶ Visual studio code extension
▶ Jupyter
▶ Pluto.jl notebooks
▶ GUIs

General programming
▶ Rich type system
▶ N-dimensional arrays
▶ . . .

→ Pluto.jldemo

Example for composability: numerical simulations with uncertainty

Combine
▶ Trixi.jl: spatial semidiscretization
▶ OrdinaryDiffEq.jl: time integration
▶ Measurements.jl: values with uncertainty

velocity = 1.0 ± 0.1

▶ Plots.jl: visualization

Credit: R. et al., documentation of Trixi.jl

Serial performance on par with Fortran

▶ 3D compressible Euler simulation
(inviscid Taylor-Green vortex)

▶ Curved mesh, entropy-conservative fluxes

▶ Comparable performance as Fortran code
FLUXO (same algorithms)

→ Performance depends on optimization effort (lower is better)

arXiv: 2112.10517 | repro: tinyurl.com/ecperf

https://arxiv.org/abs/2112.10517
https://tinyurl.com/ecperf

Parallel scalability experiments on JURECA

JURECA
▶ CPU cluster at Jülich Supercomputing

Centre, Forschungszentrum Jülich

▶ 480 compute nodes
▶ 2×AMD EPYC 7742, 2×64 cores,

2.25 GHz
▶ 512 GB DDR4, 3200 MHz
▶ 128 cores/node, 4 GB/core

▶ diskless nodes Copyright: Forschungszentrum Jülich GmbH / Ralf-Uwe Limbach

Parallel scalability of Trixi.jl

▶ Strong scaling experiment on JURECA
(MPI only) with Julia v1.8.5

▶ 16.8 mio. degrees of freedom

▶ Good scalability to 16,384 MPI ranks

▶ Comparable performance as Fortran
code FLUXO

(higher is better)

Parallel scalability to >50,000 MPI ranks

▶ Same setup as before, but 134.2 mio.
DOFs

▶ Good scalability from 128 to 61,440 cores

▶ At full JURECA: 400× speedup,
∼34 elements/rank

(higher is better)

Reproducibility

▶ Common interfaces allow splitting up tasks and enable code reuse
▶ Depending on others can be scary
▶ Dependency management and reproducibility infrastructure mitigate this

▶ Reproducibility is key in modern scientific computing
▶ Dependency management is built into Julia
▶ Binary dependencies are handled as well

“More than 70 % of researchers have tried and failed to reproduce another scientist’s
experiments, and more than half have failed to reproduce their own experiments.”

— Baker, Nature 533, 2016

Why should I care about reproducibility in scientific computing?

▶ Scientific motivation: best practice/“expected”

▶ Legal motivation: my funding agency says so

▶ Moral motivation: public money, public X

▶ Personal motivation:
Allow others to build upon my results
(and cite me/collaborate with me)

© OpenMoji / CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0

Re: Why should I care about reproducibility?

“One of the strengths of this contribution is the accessibility it provides to the algorithms.
Computational fluid dynamics packages often involve many underlying dependencies
that can take several hours to download, configure, and compile . . .By using Julia . . . ,
the authors have significantly reduced this burden: I was able to (begin) reproducing
their results within minutes.”

— Anonymous Reviewer, ACM TOMS3, 2022

3R., Schlottke-Lakemper, Chan, Rueda-Ramírez, Winters, Hindenlang and Gassner (2021)

Packages

▶ Julia packages are Git repositories
▶ Package manager Pkg in the standard library

▶ General registry
▶ Semantic versioning

Projects

▶ Specify direct dependencies with versions

▶ Version control friendly version control
(Project.toml and Manifest.toml)

▶ Excellent for reproducible science:
▶ Paper #1: https://git.io/JYBtP
▶ Paper #2: https://git.io/JYBtA
▶ Paper #3: https://git.io/JuEIO
▶ Talk #1: https://git.io/JqnrE
▶ Talk #2: https://git.io/JcLMy
▶ Talk #3: https://git.io/JcL6G
▶ . . .

https://git.io/JYBtP
https://git.io/JYBtA
https://git.io/JuEIO
https://git.io/JqnrE
https://git.io/JcLMy
https://git.io/JcL6G

Binary dependencies

▶ Pre-compiled binaries bundled as
packages (“JLL” packages)

▶ Install via regular package manager

▶ Natively call C/Fortran code from Julia

Example: adaptive meshes with p4est

▶ Wrapper package P4est.jl
▶ Auto-installs binaries with MPI support
▶ Works on Linux, macOS, Windows

https://github.com/cburstedde/p4est
https://github.com/trixi-framework/P4est.jl

Calling binaries is fast in Julia4

Function Signature Pybind11 Julia’s ccall Speedup

int fn0() 132 ±14.9 2.34 ±1.24 56×
int fn1(int) 217 ±20.9 2.35 ±1.33 92×
double fn2(int, double) 232 ±11.7 2.32 ±0.189 100×
char* fn3(int, double, char*) 267 ±28.9 6.27 ±0.396 42×

Table: Round-trip times for calling C functions from Python and Julia in nanoseconds. The
benchmark results were collected by using an Intel Core i7-1185G7 CPU running at 3.00 GHz
with Julia version 1.7.1, Python version 3.8.10, and Pybind11 version 2.9.1.

4Churavy et al. (2022)

BinaryBuilder.jl: create Julia packages with binary artifacts

▶ BinaryBuilder.jl: automate building binaries for
different targets

▶ Cross-compile locally for all Julia-supported
hosts
▶ Linux, macOS, Windows, FreeBSD
▶ x86_64, i686, ARM

▶ Output: “JLL” package with binary artifacts

▶ Yggdrasil: central Julia repo for BB.jl recipes
→ automatically create and register JLLs Yggdrasil

BinaryBuilder.jl

Workflow: binary dependency management in Julia

Workflow: binary dependency management in Julia

Yggdrasil

BinaryBuilder.jl

Workflow: binary dependency management in Julia

Binary "JLL"
packages

Yggdrasil

BinaryBuilder.jl

Workflow: binary dependency management in Julia

Package manager Pkg

Regular Julia
packages

Binary "JLL"
packages

Yggdrasil

BinaryBuilder.jl

Workflow: binary dependency management in Julia

Package manager Pkg

Regular Julia
packages

Binary "JLL"
packages

Yggdrasil

BinaryBuilder.jl

User

Caveat for HPC: using Julia with a system libraries

▶ HPC architectures often require using vendor-provided software, e.g., MPI, CUDA

▶ Need to replace MPI-enabled JLL binaries by system binaries (e.g., MPI.jl, HDF5.jl)

▶ May need to regenerate C bindings for libraries due to MPI ABI change

Remedies:
▶ Write/use wrapper packages with corresponding logic
▶ Have a look at MPItrampoline

(https://github.com/eschnett/MPItrampoline)
▶ Document setup procedures for your users and yourself

https://github.com/eschnett/MPItrampoline

FAIR data/code principles

© SangyaPundir / CC BY-SA 4.0

▶ Findable: general registry, JuliaHub, Discourse, Slack, Zulip
▶ Accessible: open source, package hosting on GitHub, Documenter.jl
▶ Interoperable: design around informal interfaces, duck typing
▶ Reusable: package structure and environments, semantic versioning

https://creativecommons.org/licenses/by-sa/4.0
https://juliahub.com
https://discourse.julialang.org

Memory usage in Julia

▶ Julia memory usage has been
increasing since Julia v1.6

▶ Problematic for MPI-only parallel
codes

▶ Less problematic for hybrid codes,
e.g., MPI+threads or MPI+GPU

Startup latency: challenge for parallel execution

▶ Compilation time remains constant

▶ Loading time increases for >2000 MPI
ranks

▶ Julia depot on parallel filesystem (GPFS)

▶ Parallel I/O becomes bottleneck

(lower is better)

Julia is promising for scientific computing
Julia hackathon in September
▶ C code MAGEMin

(several years of
development)

▶ Adaptive meshes with
C/C++ code t8code
wrapped in T8code.jl

▶ Parallelization via
Base.Threads

▶ Coupling, GUI, and
visualization in Julia

→ 1.5× faster than previous
MATLAB version (2 days)

Julia GUI and interface to LaMEM

Credit: Boris Kaus et al.

Open source software Trixi.jl

▶ Adaptive high-order simulation framework
for conservation laws (MIT license)

▶ Goals: usability, extensibility,
performance

▶ Integration with Julia ecosphere:
▶ OrdinaryDiffEq.jl: time integration
▶ ForwardDiff.jl: automatic differentiation
▶ Plots.jl, Makie.jl: plotting
▶ LoopVectorization.jl: performance
▶ Polyester.jl: multithreading
▶ MPI.jl: distributed parallelism

https://github.com/trixi-framework/Trixi.jl

https://github.com/trixi-framework/Trixi.jl

Supersonic flow with curved, adaptive mesh

Credit: Andrew R. Winters et al. with Trixi.jl

Shallow water simulation of Seaside, Oregon, US

Credit: Andrew R. Winters, Sven Goldberg, Maximilian Bertrandt et al. with Trixi.jl

Summary

▶ Julia is promosing for scientific computing
▶ from laptops to HPC systems
▶ from experimental code to international collaborations
▶ encouraging good research software engineering practices

▶ Julia is not perfect
▶ but it’s actively developed
▶ it requires some effort to use it well

https://ranocha.de

Thank you

https://ranocha.de

Summary

▶ Julia is promosing for scientific computing
▶ from laptops to HPC systems
▶ from experimental code to international collaborations
▶ encouraging good research software engineering practices

▶ Julia is not perfect
▶ but it’s actively developed
▶ it requires some effort to use it well

https://ranocha.de

Thank you

https://ranocha.de

References I

Baker, M. (2016). “1,500 scientists lift the lid on reproducibility.” In: Nature 533, pp. 452–454. doi:
10.1038/533452a.
Churavy, V., W. F. Godoy, C. Bauer, H. Ranocha, M. Schlottke-Lakemper, L. Räss, J. Blaschke, M. Giordano,
E. Schnetter, S. Omlin, J. S. Vetter, and A. Edelman (Nov. 2022). Bridging HPC Communities through the Julia
Programming Language. doi: 10.48550/arXiv.2211.02740. arXiv: 2211.02740 [cs.DC].
Ketcheson, D. I. and H. Ranocha (June 2023). “Computing with B-series.” In: ACM Transactions on Mathematical
Software 49.2. doi: 10.1145/3573384. arXiv: 2111.11680 [math.NA].
Ranocha, H., M. Schlottke-Lakemper, J. Chan, A. M. Rueda-Ramírez, A. R. Winters, F. Hindenlang, and
G. J. Gassner (Dec. 2021). Efficient implementation of modern entropy stable and kinetic energy preserving
discontinuous Galerkin methods for conservation laws. Accepted in ACM Transactions on Mathematical Software
(TOMS), 2023. arXiv: 2112.10517 [cs.MS].
Ranocha, H., M. Schlottke-Lakemper, A. R. Winters, E. Faulhaber, J. Chan, and G. J. Gassner (Jan. 2022).
“Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing.” In: Proceedings of the
JuliaCon Conferences 1.1, p. 77. doi: 10.21105/jcon.00077. arXiv: 2108.06476 [cs.MS].
Schlottke-Lakemper, M., A. R. Winters, H. Ranocha, and G. J. Gassner (June 2021). “A purely hyperbolic
discontinuous Galerkin approach for self-gravitating gas dynamics.” In: Journal of Computational Physics 442,
p. 110467. doi: 10.1016/j.jcp.2021.110467. arXiv: 2008.10593 [math.NA].

https://doi.org/10.1038/533452a
https://doi.org/10.48550/arXiv.2211.02740
https://arxiv.org/abs/2211.02740
https://doi.org/10.1145/3573384
https://arxiv.org/abs/2111.11680
https://arxiv.org/abs/2112.10517
https://doi.org/10.21105/jcon.00077
https://arxiv.org/abs/2108.06476
https://doi.org/10.1016/j.jcp.2021.110467
https://arxiv.org/abs/2008.10593

	Motivation
	Overview of Julia
	Performance
	Reproducibility
	Caveats
	Bringing it all together
	Summary
	References

